geeViz.changeDetectionLib#

Apply change detection methods usin GEE

geeViz.changeDetectionLib is the core module for setting up various change detection algorithms within GEE. Notably, it facilitates the use of LandTrendr and CCDC data preparation, application, and output formatting, compression, and decompression.

Functions

LANDTRENDRFitMagSlopeDiffCollection(ts, ...)

LANDTRENDRVertStack(composites, indexName, ...)

LTExportPrep(rawLT[, multBy])

LTLossGainExportPrep(lossGainDict[, ...])

LT_VT_multBands(img, multBy)

LT_VT_vertStack_multBands(img, ...)

VERDETFitMagSlopeDiffCollection(composites, ...)

VERDETVertStack(ts, indexName[, run_params, ...])

addLossGainToMap(lossGainStack, startYear, ...)

addMillisecondsTimeBand(img)

addToImage(img, howMuch)

annualizeCCDC(ccdcImg, startYear, endYear, ...)

applyDistDir_vertStack(stack, distDir, ...)

applyLinearInterp(composites, nYearsInterpolate)

applyVerdetScaling(ts, indexName, ...)

arrayToTimeSeries(tsArray, yearsArray, ...)

batchFeatherCCDCImgs(ccdcAnnualizedCol1, ...)

Wrapper function to join annualized CCDC images from two different CCDC collections, and iterate across images and apply featherCCDCImgs function The feather years are the overlapping years between the two CCDC collections that are used in weighting

batchSimpleLTFit(ltStacks, startYear, endYear)

ccdcChangeDetection(ccdcImg, bandName[, ...])

Function for getting change years and magnitudes for a specified band from CCDC outputs Only change from the breaks is extracted.

convertStack_To_DurFitMagSlope(...)

convertToLossGain(ltStack[, format, ...])

extractDisturbance(lt, distDir, params, mmu)

featherCCDCImgs(joinedCCDCImg, ccdcBnds, ...)

Function to feather two CCDC collections together based on overlapping data time periods and weights The feather years are the overlapping years between the two CCDC collections that are used in weighting

fitStackToCollection(stack, maxSegments, ...)

getCCDCSegCoeffs(timeImg, ccdcImg, fillGaps)

getFitSlopeCCDC(annualSegCoeffs, startYear, ...)

getLTStack(LTresult, maxVertices, bandNames)

getLTvertStack(LTresult, run_params)

getLinearFit(c[, bandNames])

getRawAndFittedLT(rawTs, lt, startYear, endYear)

getSegmentParamsForYear(ccdc, yearImg)

getTimeImageCollection(startYear, endYear[, ...])

getTimeImageCollectionFromComposites(...[, ...])

landtrendrWrapper(processedComposites, ...)

linearInterp(imgcol[, frame, nodata])

multBands(img, distDir[, by])

multLT(rawLT, multBy)

new_interp_date(dateYr, dateCollection[, ...])

new_interp_date_collection(dateCollection[, ...])

nullFinder(img, countMask)

predictCCDC(ccdcImg, timeImgs[, fillGaps, ...])

Takes one or two raw CCDC ee.Image array outputs, an ee.ImageCollection of time images, and returns a time-series ee.ImageCollection with harmonic coefficients and fitted values

predictModel(c, model[, bandNames])

prepTimeSeriesForLandTrendr(ts, indexName, ...)

prepTimeSeriesForVerdet(ts, indexName, ...)

rawLTToVertices(rawLT[, indexName, multBy, ...])

replace_mask(img, newimg[, nodata])

runLANDTRENDR(ts, bandName[, run_params])

simpleCCDCPrediction(img, timeBandName, ...)

simpleCCDCPredictionAnnualized(img, ...)

simpleCCDCPredictionWrapper(c, timeBandName, ...)

simpleGetTimeImageCollection(startYear, endYear)

Provides a time series of year and decimal days ee.ImageCollection.

simpleLANDTRENDR(ts, startYear, endYear[, ...])

Takes annual time series input data, properly sets it up for LandTrendr, runs LandTrendr, and provides both a compressed vertex-only format output as well as a basic change detection output.

simpleLTFit(ltStack, startYear, endYear[, ...])

simpleRawLTToVertices(rawLT)

thresholdChange(changeCollection, changeThresh)

thresholdZAndTrend(zAndTrendCollection, ...)

toAnnualMedian(images, startYear, endYear)

undoVerdetScaling(fitted, indexName, ...)

updateVerdetMasks(img, linearInterpMasks)

verdetAnnualSlope(tsIndex, indexName, ...[, ...])

yearlySlope(rightYear, fitted)

zAndTrendChangeDetection(allScenes, ...[, ...])