F49d Checkpoint
Import libraries¶
In [ ]:
Copied!
import ee
import geemap
import ee
import geemap
Create an interactive map¶
In [ ]:
Copied!
Map = geemap.Map(center=[40, -100], zoom=4)
Map = geemap.Map(center=[40, -100], zoom=4)
Add Earth Engine Python script¶
In [ ]:
Copied!
# Add Earth Engine dataset
image = ee.Image("USGS/SRTMGL1_003")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Chapter: F4.9 Exploring Lagged Effects in Time Series
# Checkpoint: F49d
# Authors: Andréa Puzzi Nicolau, Karen Dyson, David Saah, Nicholas Clinton
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define function to mask clouds, scale, and add variables
# (NDVI, time and a constant) to Landsat 8 imagery.
def maskScaleAndAddVariable(image):
# Bit 0 - Fill
# Bit 1 - Dilated Cloud
# Bit 2 - Cirrus
# Bit 3 - Cloud
# Bit 4 - Cloud Shadow
qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111',
2)).eq(0)
saturationMask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
opticalBands = image.select('SR_B.').multiply(0.0000275).add(-
0.2)
thermalBands = image.select('ST_B.*').multiply(0.00341802) \
.add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
img = image.addBands(opticalBands, None, True) \
.addBands(thermalBands, None, True) \
.updateMask(qaMask) \
.updateMask(saturationMask)
imgScaled = image.addBands(img, None, True)
# Now we start to add variables of interest.
# Compute time in fractional years since the epoch.
date = ee.Date(image.get('system:time_start'))
years = date.difference(ee.Date('1970-01-01'), 'year')
timeRadians = ee.Image(years.multiply(2 * math.pi))
# Return the image with the added bands.
return imgScaled \
.addBands(imgScaled.normalizedDifference(['SR_B5', 'SR_B4']) \
.rename('NDVI')) \
.addBands(timeRadians.rename('t')) \
.float() \
.addBands(ee.Image.constant(1))
# Import region of interest. Area over California.
roi = ee.Geometry.Polygon([
[-119.44617458417066,35.92639730653253],
[-119.07675930096754,35.92639730653253],
[-119.07675930096754,36.201704711823844],
[-119.44617458417066,36.201704711823844],
[-119.44617458417066,35.92639730653253]
])
# Import the USGS Landsat 8 Level 2, Collection 2, Tier 1 collection,
# filter, mask clouds, scale, and add variables.
landsat8sr = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') \
.filterBounds(roi) \
.filterDate('2013-01-01', '2018-01-01') \
.map(maskScaleAndAddVariable)
# Set map center.
Map.centerObject(roi, 10)
# List of the independent variable names.
independents = ee.List(['constant', 't'])
# Name of the dependent variable.
dependent = ee.String('NDVI')
# Compute a linear trend. This will have two bands: 'residuals' and
# a 2x1 band called coefficients (columns are for dependent variables).
trend = landsat8sr.select(independents.add(dependent)) \
.reduce(ee.Reducer.linearRegression(independents.length(), 1))
# Flatten the coefficients into a 2-band image
coefficients = trend.select('coefficients') \
.arrayProject([0]) \
.arrayFlatten([independents])
# Compute a detrended series.
def func_hhj(image):
return image.select(dependent) \
.subtract(image.select(independents).multiply(
coefficients) \
.reduce('sum')) \
.rename(dependent) \
.copyProperties(image, ['system:time_start'])
detrended = landsat8sr.map(func_hhj)
# Function that creates a lagged collection.
def lag(leftCollection, rightCollection, lagDays):
filter = ee.Filter.And(
ee.Filter.maxDifference({
'difference': 1000 * 60 * 60 * 24 * lagDays,
'leftField': 'system:time_start',
'rightField': 'system:time_start'
}),
ee.Filter.greaterThan({
'leftField': 'system:time_start',
'rightField': 'system:time_start'
}))
return ee.Join.saveAll({
'matchesKey': 'images',
'measureKey': 'delta_t',
'ordering': 'system:time_start',
'ascending': False, # Sort reverse chronologically
}).apply({
'primary': leftCollection,
'secondary': rightCollection,
'condition': filter
})
# Create a lagged collection of the detrended imagery.
lagged17 = lag(detrended, detrended, 17)
# Function to stack bands.
def merge(image):
# Function to be passed to iterate.
def merger(current, previous):
return ee.Image(previous).addBands(current)
return ee.ImageCollection.fromImages(image.get('images')) \
.iterate(merger, image)
# Apply merge function to the lagged collection.
merged17 = ee.ImageCollection(lagged17.map(merge))
# Function to compute covariance.
def covariance(mergedCollection, band, lagBand):
image) {
return image.toArray()
}).reduce(ee.Reducer.covariance(), 8)
# Concatenate the suffix to the NDVI band.
lagBand = dependent.cat('_1')
# Compute covariance.
covariance17 = ee.Image(covariance(merged17, dependent, lagBand)) \
.clip(roi)
# The output of the covariance reducer is an array image,
# in which each pixel stores a 2x2 variance-covariance array.
# The off diagonal elements are covariance, which you can map
# directly using:
Map.addLayer(covariance17.arrayGet([0, 1]),
{
'min': 0,
'max': 0.02
},
'covariance (lag = 17 days)')
# Define the correlation function.
def correlation(vcArrayImage):
covariance = ee.Image(vcArrayImage).arrayGet([0, 1])
sd0 = ee.Image(vcArrayImage).arrayGet([0, 0]).sqrt()
sd1 = ee.Image(vcArrayImage).arrayGet([1, 1]).sqrt()
return covariance.divide(sd0).divide(sd1).rename(
'correlation')
# Apply the correlation function.
correlation17 = correlation(covariance17).clip(roi)
Map.addLayer(correlation17,
{
'min': -1,
'max': 1
},
'correlation (lag = 17 days)')
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
########### Cross-covariance and Cross-correlation ##########/
# Precipitation (covariate)
chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD')
# Join the t-l (l=1 pentad) precipitation images to the Landsat.
lag1PrecipNDVI = lag(landsat8sr, chirps, 5)
# Add the precipitation images as bands.
merged1PrecipNDVI = ee.ImageCollection(lag1PrecipNDVI.map(merge))
# Compute and display cross-covariance.
cov1PrecipNDVI = covariance(merged1PrecipNDVI, 'NDVI',
'precipitation').clip(roi)
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {},
'NDVI - PRECIP cov (lag = 5)')
# Compute and display cross-correlation.
corr1PrecipNDVI = correlation(cov1PrecipNDVI).clip(roi)
Map.addLayer(corr1PrecipNDVI, {
'min': -0.5,
'max': 0.5
}, 'NDVI - PRECIP corr (lag = 5)')
# Join the precipitation images from the previous month.
lag30PrecipNDVI = lag(landsat8sr, chirps, 30)
image) {
laggedImages = ee.ImageCollection.fromImages(image \
.get('images'))
return ee.Image(image).addBands(laggedImages.sum() \
.rename('sum'))
}))
# Compute covariance.
cov30PrecipNDVI = covariance(sum30PrecipNDVI, 'NDVI', 'sum').clip(
roi)
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {},
'NDVI - sum cov (lag = 30)')
# Correlation.
corr30PrecipNDVI = correlation(cov30PrecipNDVI).clip(roi)
Map.addLayer(corr30PrecipNDVI, {
'min': -0.5,
'max': 0.5
}, 'NDVI - sum corr (lag = 30)')
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
########### Auto-regressive models ##########/
lagged34 = ee.ImageCollection(lag(landsat8sr, landsat8sr, 34))
def func_trh(image):
return image.set('n', ee.List(image.get('images')) \
.length())
merged34 = lagged34.map(merge).map(func_trh
).filter(ee.Filter.gt('n', 1))
).filter(ee.Filter.gt('n', 1))
arIndependents = ee.List(['constant', 'NDVI_1', 'NDVI_2'])
ar2 = merged34 \
.select(arIndependents.add(dependent)) \
.reduce(ee.Reducer.linearRegression(arIndependents.length(), 1))
# Turn the array image into a multi-band image of coefficients.
arCoefficients = ar2.select('coefficients') \
.arrayProject([0]) \
.arrayFlatten([arIndependents])
# Compute fitted values.
def func_gnj(image):
return image.addBands(
image.expression(
'beta0 + beta1 * p1 + beta2 * p2', {
'p1': image.select('NDVI_1'),
'p2': image.select('NDVI_2'),
'beta0': arCoefficients.select('constant'),
'beta1': arCoefficients.select('NDVI_1'),
'beta2': arCoefficients.select('NDVI_2')
}).rename('fitted'))
fittedAR = merged34.map(func_gnj)
# Create an Earth Engine point object to print the time series chart.
pt = ee.Geometry.Point([-119.0955, 35.9909])
print(ui.Chart.image.series(
fittedAR.select(['fitted', 'NDVI']), pt, ee.Reducer \
.mean(), 30) \
.setSeriesNames(['NDVI', 'fitted']) \
.setOptions({
'title': 'AR(2) model: original and fitted values',
'lineWidth': 1,
'pointSize': 3,
}))
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
########/ Forecasting ############/
# Forecasting
def fill(current, list):
# Get the date of the last image in the list.
latestDate = ee.Image(ee.List(list).get(-1)).date()
# Get the date of the current image being processed.
currentDate = ee.Image(current).date()
# If those two dates are more than 16 days apart, there's
# a temporal gap in the sequence. To fill in the gap, compute
# the potential starting and ending dates of the gap.
start = latestDate.advance(16, 'day').millis()
end = currentDate.advance(-16, 'day').millis()
# Determine if the start and end dates are chronological.
blankImages = ee.Algorithms.If({
# Watch out for this. Might need a tolerance here.
'condition': start.lt(end),
# Make a sequence of dates to fill in with empty images.
'TrueCase': ee.List.sequence({
'start': start,
'end': end,
'step': 1000 * 60 * 60 * 24 * 16
def func_qlc(date):
# Return a dummy image with a masked NDVI band and a date.
return ee.Image(0).mask(0).rename(
'NDVI').set({
'dummy': True,
'system:time_start': ee \
.Date(date).millis()
})
}).map(func_qlc
),
),
# If there's no gap, return an empty list.
'FalseCase': []
})
# Add any dummy images and the current image to the list.
return ee.List(list).cat(blankImages).add(current)
# The first image is the starting image.
first = landsat8sr.first()
# The first image is duplicated in this list, so slice it off.
filled = ee.List(landsat8sr.iterate(fill, [first])).slice(1)
# Now, map a function over this list to do the prediction.
indices = ee.List.sequence(5, filled.length().subtract(1))
# A function to forecast from the previous two images.
def forecast(current, list):
ndvi = ee.Image(current).select('NDVI')
# Get the t-1 and t-2 images.
size = ee.List(list).size()
image1 = ee.Image(ee.List(list).get(size.subtract(1)))
image2 = ee.Image(ee.List(list).get(size.subtract(2)))
predicted = ee.Image().expression(
'beta0 + beta1 * p1 + beta2 * p2', {
'p1': image1.select('NDVI'),
'p2': image2.select('NDVI'),
'beta0': arCoefficients.select('constant'),
'beta1': arCoefficients.select('NDVI_1'),
'beta2': arCoefficients.select('NDVI_2')
}).rename('NDVI') \
.set('system:time_start', current.get(
'system:time_start'))
# Replace the entire image if it's a dummy.
replaced = ee.Algorithms.If({
'condition': current.get('dummy'),
'TrueCase': predicted,
# Otherwise replace only masked pixels.
'FalseCase': current.addBands({
'srcImg': ndvi.unmask().where(ndvi \
.mask().Not(), predicted).rename(
'NDVI'),
'overwrite': True
})
})
# Add the predicted image to the list.
return ee.List(list).add(replaced)
# Start at a point in the sequence with three consecutive real images.
startList = filled.slice(4, 5)
# Iterate over the filled series to replace dummy images with predictions.
modeled = ee.ImageCollection.fromImages(
ee.ImageCollection(filled).iterate(forecast, startList)) \
.select('NDVI')
print(ui.Chart.image.series(
modeled, pt, ee.Reducer.mean(), 30) \
.setSeriesNames(['NDVI']) \
.setOptions({
'title': 'Forecast',
'lineWidth': 1,
'pointSize': 3,
}))
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Add Earth Engine dataset
image = ee.Image("USGS/SRTMGL1_003")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Chapter: F4.9 Exploring Lagged Effects in Time Series
# Checkpoint: F49d
# Authors: Andréa Puzzi Nicolau, Karen Dyson, David Saah, Nicholas Clinton
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define function to mask clouds, scale, and add variables
# (NDVI, time and a constant) to Landsat 8 imagery.
def maskScaleAndAddVariable(image):
# Bit 0 - Fill
# Bit 1 - Dilated Cloud
# Bit 2 - Cirrus
# Bit 3 - Cloud
# Bit 4 - Cloud Shadow
qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111',
2)).eq(0)
saturationMask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
opticalBands = image.select('SR_B.').multiply(0.0000275).add(-
0.2)
thermalBands = image.select('ST_B.*').multiply(0.00341802) \
.add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
img = image.addBands(opticalBands, None, True) \
.addBands(thermalBands, None, True) \
.updateMask(qaMask) \
.updateMask(saturationMask)
imgScaled = image.addBands(img, None, True)
# Now we start to add variables of interest.
# Compute time in fractional years since the epoch.
date = ee.Date(image.get('system:time_start'))
years = date.difference(ee.Date('1970-01-01'), 'year')
timeRadians = ee.Image(years.multiply(2 * math.pi))
# Return the image with the added bands.
return imgScaled \
.addBands(imgScaled.normalizedDifference(['SR_B5', 'SR_B4']) \
.rename('NDVI')) \
.addBands(timeRadians.rename('t')) \
.float() \
.addBands(ee.Image.constant(1))
# Import region of interest. Area over California.
roi = ee.Geometry.Polygon([
[-119.44617458417066,35.92639730653253],
[-119.07675930096754,35.92639730653253],
[-119.07675930096754,36.201704711823844],
[-119.44617458417066,36.201704711823844],
[-119.44617458417066,35.92639730653253]
])
# Import the USGS Landsat 8 Level 2, Collection 2, Tier 1 collection,
# filter, mask clouds, scale, and add variables.
landsat8sr = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') \
.filterBounds(roi) \
.filterDate('2013-01-01', '2018-01-01') \
.map(maskScaleAndAddVariable)
# Set map center.
Map.centerObject(roi, 10)
# List of the independent variable names.
independents = ee.List(['constant', 't'])
# Name of the dependent variable.
dependent = ee.String('NDVI')
# Compute a linear trend. This will have two bands: 'residuals' and
# a 2x1 band called coefficients (columns are for dependent variables).
trend = landsat8sr.select(independents.add(dependent)) \
.reduce(ee.Reducer.linearRegression(independents.length(), 1))
# Flatten the coefficients into a 2-band image
coefficients = trend.select('coefficients') \
.arrayProject([0]) \
.arrayFlatten([independents])
# Compute a detrended series.
def func_hhj(image):
return image.select(dependent) \
.subtract(image.select(independents).multiply(
coefficients) \
.reduce('sum')) \
.rename(dependent) \
.copyProperties(image, ['system:time_start'])
detrended = landsat8sr.map(func_hhj)
# Function that creates a lagged collection.
def lag(leftCollection, rightCollection, lagDays):
filter = ee.Filter.And(
ee.Filter.maxDifference({
'difference': 1000 * 60 * 60 * 24 * lagDays,
'leftField': 'system:time_start',
'rightField': 'system:time_start'
}),
ee.Filter.greaterThan({
'leftField': 'system:time_start',
'rightField': 'system:time_start'
}))
return ee.Join.saveAll({
'matchesKey': 'images',
'measureKey': 'delta_t',
'ordering': 'system:time_start',
'ascending': False, # Sort reverse chronologically
}).apply({
'primary': leftCollection,
'secondary': rightCollection,
'condition': filter
})
# Create a lagged collection of the detrended imagery.
lagged17 = lag(detrended, detrended, 17)
# Function to stack bands.
def merge(image):
# Function to be passed to iterate.
def merger(current, previous):
return ee.Image(previous).addBands(current)
return ee.ImageCollection.fromImages(image.get('images')) \
.iterate(merger, image)
# Apply merge function to the lagged collection.
merged17 = ee.ImageCollection(lagged17.map(merge))
# Function to compute covariance.
def covariance(mergedCollection, band, lagBand):
image) {
return image.toArray()
}).reduce(ee.Reducer.covariance(), 8)
# Concatenate the suffix to the NDVI band.
lagBand = dependent.cat('_1')
# Compute covariance.
covariance17 = ee.Image(covariance(merged17, dependent, lagBand)) \
.clip(roi)
# The output of the covariance reducer is an array image,
# in which each pixel stores a 2x2 variance-covariance array.
# The off diagonal elements are covariance, which you can map
# directly using:
Map.addLayer(covariance17.arrayGet([0, 1]),
{
'min': 0,
'max': 0.02
},
'covariance (lag = 17 days)')
# Define the correlation function.
def correlation(vcArrayImage):
covariance = ee.Image(vcArrayImage).arrayGet([0, 1])
sd0 = ee.Image(vcArrayImage).arrayGet([0, 0]).sqrt()
sd1 = ee.Image(vcArrayImage).arrayGet([1, 1]).sqrt()
return covariance.divide(sd0).divide(sd1).rename(
'correlation')
# Apply the correlation function.
correlation17 = correlation(covariance17).clip(roi)
Map.addLayer(correlation17,
{
'min': -1,
'max': 1
},
'correlation (lag = 17 days)')
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
########### Cross-covariance and Cross-correlation ##########/
# Precipitation (covariate)
chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD')
# Join the t-l (l=1 pentad) precipitation images to the Landsat.
lag1PrecipNDVI = lag(landsat8sr, chirps, 5)
# Add the precipitation images as bands.
merged1PrecipNDVI = ee.ImageCollection(lag1PrecipNDVI.map(merge))
# Compute and display cross-covariance.
cov1PrecipNDVI = covariance(merged1PrecipNDVI, 'NDVI',
'precipitation').clip(roi)
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {},
'NDVI - PRECIP cov (lag = 5)')
# Compute and display cross-correlation.
corr1PrecipNDVI = correlation(cov1PrecipNDVI).clip(roi)
Map.addLayer(corr1PrecipNDVI, {
'min': -0.5,
'max': 0.5
}, 'NDVI - PRECIP corr (lag = 5)')
# Join the precipitation images from the previous month.
lag30PrecipNDVI = lag(landsat8sr, chirps, 30)
image) {
laggedImages = ee.ImageCollection.fromImages(image \
.get('images'))
return ee.Image(image).addBands(laggedImages.sum() \
.rename('sum'))
}))
# Compute covariance.
cov30PrecipNDVI = covariance(sum30PrecipNDVI, 'NDVI', 'sum').clip(
roi)
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {},
'NDVI - sum cov (lag = 30)')
# Correlation.
corr30PrecipNDVI = correlation(cov30PrecipNDVI).clip(roi)
Map.addLayer(corr30PrecipNDVI, {
'min': -0.5,
'max': 0.5
}, 'NDVI - sum corr (lag = 30)')
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
########### Auto-regressive models ##########/
lagged34 = ee.ImageCollection(lag(landsat8sr, landsat8sr, 34))
def func_trh(image):
return image.set('n', ee.List(image.get('images')) \
.length())
merged34 = lagged34.map(merge).map(func_trh
).filter(ee.Filter.gt('n', 1))
).filter(ee.Filter.gt('n', 1))
arIndependents = ee.List(['constant', 'NDVI_1', 'NDVI_2'])
ar2 = merged34 \
.select(arIndependents.add(dependent)) \
.reduce(ee.Reducer.linearRegression(arIndependents.length(), 1))
# Turn the array image into a multi-band image of coefficients.
arCoefficients = ar2.select('coefficients') \
.arrayProject([0]) \
.arrayFlatten([arIndependents])
# Compute fitted values.
def func_gnj(image):
return image.addBands(
image.expression(
'beta0 + beta1 * p1 + beta2 * p2', {
'p1': image.select('NDVI_1'),
'p2': image.select('NDVI_2'),
'beta0': arCoefficients.select('constant'),
'beta1': arCoefficients.select('NDVI_1'),
'beta2': arCoefficients.select('NDVI_2')
}).rename('fitted'))
fittedAR = merged34.map(func_gnj)
# Create an Earth Engine point object to print the time series chart.
pt = ee.Geometry.Point([-119.0955, 35.9909])
print(ui.Chart.image.series(
fittedAR.select(['fitted', 'NDVI']), pt, ee.Reducer \
.mean(), 30) \
.setSeriesNames(['NDVI', 'fitted']) \
.setOptions({
'title': 'AR(2) model: original and fitted values',
'lineWidth': 1,
'pointSize': 3,
}))
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
########/ Forecasting ############/
# Forecasting
def fill(current, list):
# Get the date of the last image in the list.
latestDate = ee.Image(ee.List(list).get(-1)).date()
# Get the date of the current image being processed.
currentDate = ee.Image(current).date()
# If those two dates are more than 16 days apart, there's
# a temporal gap in the sequence. To fill in the gap, compute
# the potential starting and ending dates of the gap.
start = latestDate.advance(16, 'day').millis()
end = currentDate.advance(-16, 'day').millis()
# Determine if the start and end dates are chronological.
blankImages = ee.Algorithms.If({
# Watch out for this. Might need a tolerance here.
'condition': start.lt(end),
# Make a sequence of dates to fill in with empty images.
'TrueCase': ee.List.sequence({
'start': start,
'end': end,
'step': 1000 * 60 * 60 * 24 * 16
def func_qlc(date):
# Return a dummy image with a masked NDVI band and a date.
return ee.Image(0).mask(0).rename(
'NDVI').set({
'dummy': True,
'system:time_start': ee \
.Date(date).millis()
})
}).map(func_qlc
),
),
# If there's no gap, return an empty list.
'FalseCase': []
})
# Add any dummy images and the current image to the list.
return ee.List(list).cat(blankImages).add(current)
# The first image is the starting image.
first = landsat8sr.first()
# The first image is duplicated in this list, so slice it off.
filled = ee.List(landsat8sr.iterate(fill, [first])).slice(1)
# Now, map a function over this list to do the prediction.
indices = ee.List.sequence(5, filled.length().subtract(1))
# A function to forecast from the previous two images.
def forecast(current, list):
ndvi = ee.Image(current).select('NDVI')
# Get the t-1 and t-2 images.
size = ee.List(list).size()
image1 = ee.Image(ee.List(list).get(size.subtract(1)))
image2 = ee.Image(ee.List(list).get(size.subtract(2)))
predicted = ee.Image().expression(
'beta0 + beta1 * p1 + beta2 * p2', {
'p1': image1.select('NDVI'),
'p2': image2.select('NDVI'),
'beta0': arCoefficients.select('constant'),
'beta1': arCoefficients.select('NDVI_1'),
'beta2': arCoefficients.select('NDVI_2')
}).rename('NDVI') \
.set('system:time_start', current.get(
'system:time_start'))
# Replace the entire image if it's a dummy.
replaced = ee.Algorithms.If({
'condition': current.get('dummy'),
'TrueCase': predicted,
# Otherwise replace only masked pixels.
'FalseCase': current.addBands({
'srcImg': ndvi.unmask().where(ndvi \
.mask().Not(), predicted).rename(
'NDVI'),
'overwrite': True
})
})
# Add the predicted image to the list.
return ee.List(list).add(replaced)
# Start at a point in the sequence with three consecutive real images.
startList = filled.slice(4, 5)
# Iterate over the filled series to replace dummy images with predictions.
modeled = ee.ImageCollection.fromImages(
ee.ImageCollection(filled).iterate(forecast, startList)) \
.select('NDVI')
print(ui.Chart.image.series(
modeled, pt, ee.Reducer.mean(), 30) \
.setSeriesNames(['NDVI']) \
.setOptions({
'title': 'Forecast',
'lineWidth': 1,
'pointSize': 3,
}))
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
Display the interactive map¶
In [ ]:
Copied!
Map
Map