F41c Checkpoint
Import libraries¶
In [ ]:
Copied!
import ee
import geemap
import ee
import geemap
Create an interactive map¶
In [ ]:
Copied!
Map = geemap.Map(center=[40, -100], zoom=4)
Map = geemap.Map(center=[40, -100], zoom=4)
Add Earth Engine Python script¶
In [ ]:
Copied!
# Add Earth Engine dataset
image = ee.Image("USGS/SRTMGL1_003")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Chapter: F4.1 Exploring Image Collections
# Checkpoint: F41c
# Author: Gennadii Donchyts
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define a region of interest as a point in Lisbon, Portugal.
lisbonPoint = ee.Geometry.Point(-9.179473, 38.763948)
# Center the map at that point.
Map.centerObject(lisbonPoint, 16)
# filter the large ImageCollection to be just images from 2020
# around Lisbon. From each image, select True-color bands to draw
filteredIC = (
ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterDate("2020-01-01", "2021-01-01")
.filterBounds(lisbonPoint)
.select(["B6", "B5", "B4"])
)
# Add the filtered ImageCollection so that we can inspect values
# via the Inspector tool
Map.addLayer(filteredIC, {}, "TOA image collection")
# Construct a chart using values queried from image collection.
chart = ui.Chart.image.series(
{
"imageCollection": filteredIC,
"region": lisbonPoint,
"reducer": ee.Reducer.first(),
"scale": 10,
}
)
# Show the chart in the Console.
print(chart)
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# compute and show the number of observations in an image collection
count = (
ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterDate("2020-01-01", "2021-01-01")
.select(["B6"])
.count()
)
# add white background and switch to HYBRID basemap
Map.addLayer(ee.Image(1), {"palette": ["white"]}, "white", True, 0.5)
Map.setOptions("HYBRID")
# show image count
Map.addLayer(
count,
{
"min": 0,
"max": 50,
"palette": ["d7191c", "fdae61", "ffffbf", "a6d96a", "1a9641"],
},
"landsat 8 image count (2020)",
)
# Center the map at that point.
Map.centerObject(lisbonPoint, 5)
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Zoom to an informative scale for the code that follows.
Map.centerObject(lisbonPoint, 10)
# Add a mean composite image.
meanFilteredIC = filteredIC.reduce(ee.Reducer.mean())
Map.addLayer(meanFilteredIC, {}, "Mean values within image collection")
# Add a median composite image.
medianFilteredIC = filteredIC.reduce(ee.Reducer.median())
Map.addLayer(medianFilteredIC, {}, "Median values within image collection")
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Add Earth Engine dataset
image = ee.Image("USGS/SRTMGL1_003")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Chapter: F4.1 Exploring Image Collections
# Checkpoint: F41c
# Author: Gennadii Donchyts
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define a region of interest as a point in Lisbon, Portugal.
lisbonPoint = ee.Geometry.Point(-9.179473, 38.763948)
# Center the map at that point.
Map.centerObject(lisbonPoint, 16)
# filter the large ImageCollection to be just images from 2020
# around Lisbon. From each image, select True-color bands to draw
filteredIC = (
ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterDate("2020-01-01", "2021-01-01")
.filterBounds(lisbonPoint)
.select(["B6", "B5", "B4"])
)
# Add the filtered ImageCollection so that we can inspect values
# via the Inspector tool
Map.addLayer(filteredIC, {}, "TOA image collection")
# Construct a chart using values queried from image collection.
chart = ui.Chart.image.series(
{
"imageCollection": filteredIC,
"region": lisbonPoint,
"reducer": ee.Reducer.first(),
"scale": 10,
}
)
# Show the chart in the Console.
print(chart)
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# compute and show the number of observations in an image collection
count = (
ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterDate("2020-01-01", "2021-01-01")
.select(["B6"])
.count()
)
# add white background and switch to HYBRID basemap
Map.addLayer(ee.Image(1), {"palette": ["white"]}, "white", True, 0.5)
Map.setOptions("HYBRID")
# show image count
Map.addLayer(
count,
{
"min": 0,
"max": 50,
"palette": ["d7191c", "fdae61", "ffffbf", "a6d96a", "1a9641"],
},
"landsat 8 image count (2020)",
)
# Center the map at that point.
Map.centerObject(lisbonPoint, 5)
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Zoom to an informative scale for the code that follows.
Map.centerObject(lisbonPoint, 10)
# Add a mean composite image.
meanFilteredIC = filteredIC.reduce(ee.Reducer.mean())
Map.addLayer(meanFilteredIC, {}, "Mean values within image collection")
# Add a median composite image.
medianFilteredIC = filteredIC.reduce(ee.Reducer.median())
Map.addLayer(medianFilteredIC, {}, "Median values within image collection")
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
Display the interactive map¶
In [ ]:
Copied!
Map
Map