A16g Checkpoint
Import libraries¶
In [ ]:
Copied!
import ee
import geemap
import ee
import geemap
Create an interactive map¶
In [ ]:
Copied!
Map = geemap.Map(center=[40, -100], zoom=4)
Map = geemap.Map(center=[40, -100], zoom=4)
Add Earth Engine Python script¶
In [ ]:
Copied!
# Add Earth Engine dataset
image = ee.Image("USGS/SRTMGL1_003")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Chapter: A1.6 Health Applications
# Checkpoint: A16g
# Author: Dawn Nekorchuk
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Section 1: Data Import
woredas = ee.FeatureCollection(
'projects/gee-book/assets/A1-6/amhara_woreda_20170207')
# Create region outer boundary to filter products on.
amhara = woredas.geometry().bounds()
gpm = ee.ImageCollection('NASA/GPM_L3/IMERG_V06')
LSTTerra8 = ee.ImageCollection('MODIS/061/MOD11A2') \
.filterDate('2001-06-26', Date.now())
brdfReflect = ee.ImageCollection('MODIS/006/MCD43A4')
brdfQa = ee.ImageCollection('MODIS/006/MCD43A2')
# Visualize woredas with black borders and no fill.
# Create an empty image into which to paint the features, cast to byte.
empty = ee.Image().byte()
# Paint all the polygon edges with the same number and width.
outline = empty.paint({
'featureCollection': woredas,
'color': 1,
'width': 1
})
# Add woreda boundaries to the map.
Map.setCenter(38, 11.5, 7)
Map.addLayer(outline, {
'palette': '000000'
}, 'Woredas')
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 2: Handling of dates
# 2.1 Requested start and end dates.
reqStartDate = ee.Date('2021-10-01')
reqEndDate = ee.Date('2021-11-30')
# 2.2 LST Dates
# LST MODIS is every 8 days, and a user-requested date will likely not match.
# We want to get the latest previous image date,
# i.e. the date the closest, but prior to, the requested date.
# We will filter later.
# Get date of first image.
LSTEarliestDate = LSTTerra8.first().date()
# Filter collection to dates from beginning to requested start date.
priorLstImgCol = LSTTerra8.filterDate(LSTEarliestDate,
reqStartDate)
# Get the latest (max) date of this collection of earlier images.
LSTPrevMax = priorLstImgCol.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
LSTStartDate = ee.Date(LSTPrevMax.get('max'))
print('LSTStartDate', LSTStartDate)
# 2.3 Last available data dates
# Different variables have different data lags.
# Data may not be available in user range.
# To prevent errors from stopping script,
# grab last available (if relevant) & filter at end.
# 2.3.1 Precipitation
# Calculate date of most recent measurement for gpm (of all time).
gpmAllMax = gpm.reduceColumns(ee.Reducer.max(), [
'system:time_start'
])
gpmAllEndDateTime = ee.Date(gpmAllMax.get('max'))
# GPM every 30 minutes, so get just date part.
gpmAllEndDate = ee.Date.fromYMD({
'year': gpmAllEndDateTime.get('year'),
'month': gpmAllEndDateTime.get('month'),
'day': gpmAllEndDateTime.get('day')
})
# If data ends before requested start, take last data date,
# otherwise use requested date.
precipStartDate = ee.Date(gpmAllEndDate.millis() \
.min(reqStartDate.millis()))
print('precipStartDate', precipStartDate)
# 2.3.2 BRDF
# Calculate date of most recent measurement for brdf (of all time).
brdfAllMax = brdfReflect.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
brdfAllEndDate = ee.Date(brdfAllMax.get('max'))
# If data ends before requested start, take last data date,
# otherwise use the requested date.
brdfStartDate = ee.Date(brdfAllEndDate.millis() \
.min(reqStartDate.millis()))
print('brdfStartDate', brdfStartDate)
print('brdfEndDate', brdfAllEndDate)
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 3: Precipitation
# Section 3.1: Precipitation filtering and dates
# Filter gpm by date, using modified start if necessary.
gpmFiltered = gpm \
.filterDate(precipStartDate, reqEndDate.advance(1, 'day')) \
.filterBounds(amhara) \
.select('precipitationCal')
# Calculate date of most recent measurement for gpm
# (in the modified requested window).
gpmMax = gpmFiltered.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
gpmEndDate = ee.Date(gpmMax.get('max'))
precipEndDate = gpmEndDate
print('precipEndDate ', precipEndDate)
# Create a list of dates for the precipitation time series.
precipDays = precipEndDate.difference(precipStartDate, 'day')
precipDatesPrep = ee.List.sequence(0, precipDays, 1)
def makePrecipDates(n):
return precipStartDate.advance(n, 'day')
precipDates = precipDatesPrep.map(makePrecipDates)
# Section 3.2: Calculate daily precipitation
# Function to calculate daily precipitation:
def calcDailyPrecip(curdate):
curdate = ee.Date(curdate)
curyear = curdate.get('year')
curdoy = curdate.getRelative('day', 'year').add(1)
totprec = gpmFiltered \
.filterDate(curdate, curdate.advance(1, 'day')) \
.select('precipitationCal') \
.sum() \
.multiply(0.5) \
.rename('totprec')
return totprec \
.set('doy', curdoy) \
.set('year', curyear) \
.set('system:time_start', curdate)
# Map function over list of dates.
dailyPrecipExtended =
ee.ImageCollection.fromImages(precipDates.map(calcDailyPrecip))
# Filter back to the original user requested start date.
dailyPrecip = dailyPrecipExtended \
.filterDate(reqStartDate, precipEndDate.advance(1, 'day'))
# Section 3.3: Summarize daily precipitation by woreda
# Filter precip data for zonal summaries.
precipSummary = dailyPrecip \
.filterDate(reqStartDate, reqEndDate.advance(1, 'day'))
# Function to calculate zonal statistics for precipitation by woreda.
def sumZonalPrecip(image):
# To get the doy and year,
# convert the metadata to grids and then summarize.
image2 = image.addBands([
image.metadata('doy').int(),
image.metadata('year').int()
])
# Reduce by regions to get zonal means for each county.
output = image2.select(['year', 'doy', 'totprec']) \
.reduceRegions({
'collection': woredas,
'reducer': ee.Reducer.mean(),
'scale': 1000
})
return output
# Map the zonal statistics function over the filtered precip data.
precipWoreda = precipSummary.map(sumZonalPrecip)
# Flatten the results for export.
precipFlat = precipWoreda.flatten()
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 4: Land surface temperature
# Section 4.1: Calculate LST variables
# Filter Terra LST by altered LST start date.
# Rarely, but at the end of the year if the last image is late in the year
# with only a few days in its period, it will sometimes not grab
# the next image. Add extra padding to reqEndDate and
# it will be trimmed at the end.
LSTFiltered = LSTTerra8 \
.filterDate(LSTStartDate, reqEndDate.advance(8, 'day')) \
.filterBounds(amhara) \
.select('LST_Day_1km', 'QC_Day', 'LST_Night_1km', 'QC_Night')
# Filter Terra LST by QA information.
def filterLstQa(image):
qaday = image.select(['QC_Day'])
qanight = image.select(['QC_Night'])
dayshift = qaday.rightShift(6)
nightshift = qanight.rightShift(6)
daymask = dayshift.lte(2)
nightmask = nightshift.lte(2)
outimage = ee.Image(image.select(['LST_Day_1km',
'LST_Night_1km'
]))
outmask = ee.Image([daymask, nightmask])
return outimage.updateMask(outmask)
LSTFilteredQa = LSTFiltered.map(filterLstQa)
# Rescale temperature data and convert to degrees Celsius (C).
def rescaleLst(image):
LST_day = image.select('LST_Day_1km') \
.multiply(0.02) \
.subtract(273.15) \
.rename('LST_day')
LST_night = image.select('LST_Night_1km') \
.multiply(0.02) \
.subtract(273.15) \
.rename('LST_night')
LST_mean = image.expression(
'(day + night) / 2', {
'day': LST_day.select('LST_day'),
'night': LST_night.select('LST_night')
}
).rename('LST_mean')
return image.addBands(LST_day) \
.addBands(LST_night) \
.addBands(LST_mean)
LSTVars = LSTFilteredQa.map(rescaleLst)
# Section 4.2: Calculate daily LST
# Create list of dates for time series.
LSTRange = LSTVars.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
LSTEndDate = ee.Date(LSTRange.get('max')).advance(7, 'day')
LSTDays = LSTEndDate.difference(LSTStartDate, 'day')
LSTDatesPrep = ee.List.sequence(0, LSTDays, 1)
def makeLstDates(n):
return LSTStartDate.advance(n, 'day')
LSTDates = LSTDatesPrep.map(makeLstDates)
# Function to calculate daily LST by assigning the 8-day composite summary
# to each day in the composite period:
def calcDailyLst(curdate):
curyear = ee.Date(curdate).get('year')
curdoy = ee.Date(curdate).getRelative('day', 'year').add(1)
moddoy = curdoy.divide(8).ceil().subtract(1).multiply(8).add(
1)
basedate = ee.Date.fromYMD(curyear, 1, 1)
moddate = basedate.advance(moddoy.subtract(1), 'day')
LST_day = LSTVars \
.select('LST_day') \
.filterDate(moddate, moddate.advance(1, 'day')) \
.first() \
.rename('LST_day')
LST_night = LSTVars \
.select('LST_night') \
.filterDate(moddate, moddate.advance(1, 'day')) \
.first() \
.rename('LST_night')
LST_mean = LSTVars \
.select('LST_mean') \
.filterDate(moddate, moddate.advance(1, 'day')) \
.first() \
.rename('LST_mean')
return LST_day \
.addBands(LST_night) \
.addBands(LST_mean) \
.set('doy', curdoy) \
.set('year', curyear) \
.set('system:time_start', curdate)
# Map the function over the image collection
dailyLstExtended =
ee.ImageCollection.fromImages(LSTDates.map(calcDailyLst))
# Filter back to original user requested start date
dailyLst = dailyLstExtended \
.filterDate(reqStartDate, LSTEndDate.advance(1, 'day'))
# Section 4.3: Summarize daily LST by woreda
# Filter LST data for zonal summaries.
LSTSummary = dailyLst \
.filterDate(reqStartDate, reqEndDate.advance(1, 'day'))
# Function to calculate zonal statistics for LST by woreda:
def sumZonalLst(image):
# To get the doy and year, we convert the metadata to grids
# and then summarize.
image2 = image.addBands([
image.metadata('doy').int(),
image.metadata('year').int()
])
# Reduce by regions to get zonal means for each county.
output = image2 \
.select(['doy', 'year', 'LST_day', 'LST_night', 'LST_mean']) \
.reduceRegions({
'collection': woredas,
'reducer': ee.Reducer.mean(),
'scale': 1000
})
return output
# Map the zonal statistics function over the filtered LST data.
LSTWoreda = LSTSummary.map(sumZonalLst)
# Flatten the results for export.
LSTFlat = LSTWoreda.flatten()
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 5: Spectral index NDWI
# Section 5.1: Calculate NDWI
# Filter BRDF-Adjusted Reflectance by date.
brdfReflectVars = brdfReflect \
.filterDate(brdfStartDate, reqEndDate.advance(1, 'day')) \
.filterBounds(amhara) \
.select([
'Nadir_Reflectance_Band1', 'Nadir_Reflectance_Band2',
'Nadir_Reflectance_Band3', 'Nadir_Reflectance_Band4',
'Nadir_Reflectance_Band5', 'Nadir_Reflectance_Band6',
'Nadir_Reflectance_Band7'
],
['red', 'nir', 'blue', 'green', 'swir1', 'swir2', 'swir3'])
# Filter BRDF QA by date.
brdfReflectQa = brdfQa \
.filterDate(brdfStartDate, reqEndDate.advance(1, 'day')) \
.filterBounds(amhara) \
.select([
'BRDF_Albedo_Band_Quality_Band1',
'BRDF_Albedo_Band_Quality_Band2',
'BRDF_Albedo_Band_Quality_Band3',
'BRDF_Albedo_Band_Quality_Band4',
'BRDF_Albedo_Band_Quality_Band5',
'BRDF_Albedo_Band_Quality_Band6',
'BRDF_Albedo_Band_Quality_Band7',
'BRDF_Albedo_LandWaterType'
],
['qa1', 'qa2', 'qa3', 'qa4', 'qa5', 'qa6', 'qa7', 'water'])
# Join the 2 collections.
idJoin = ee.Filter.equals({
'leftField': 'system:time_end',
'rightField': 'system:time_end'
})
# Define the join.
innerJoin = ee.Join.inner('NBAR', 'QA')
# Apply the join.
brdfJoined = innerJoin.apply(brdfReflectVars, brdfReflectQa,
idJoin)
# Add QA bands to the NBAR collection.
def addQaBands(image):
nbar = ee.Image(image.get('NBAR'))
qa = ee.Image(image.get('QA')).select(['qa2'])
water = ee.Image(image.get('QA')).select(['water'])
return nbar.addBands([qa, water])
brdfMerged = ee.ImageCollection(brdfJoined.map(addQaBands))
# Function to mask out pixels based on QA and water/land flags.
def filterBrdf(image):
# Using QA info for the NIR band.
qaband = image.select(['qa2'])
wband = image.select(['water'])
qamask = qaband.lte(2).And(wband.eq(1))
nir_r = image.select('nir').multiply(0.0001).rename('nir_r')
swir2_r = image.select('swir2').multiply(0.0001).rename(
'swir2_r')
return image.addBands(nir_r) \
.addBands(swir2_r) \
.updateMask(qamask)
brdfFilteredVars = brdfMerged.map(filterBrdf)
# Function to calculate spectral indices:
def calcBrdfIndices(image):
curyear = ee.Date(image.get('system:time_start')).get('year')
curdoy = ee.Date(image.get('system:time_start')) \
.getRelative('day', 'year').add(1)
ndwi6 = image.normalizedDifference(['nir_r', 'swir2_r']) \
.rename('ndwi6')
return image.addBands(ndwi6) \
.set('doy', curdoy) \
.set('year', curyear)
# Map function over image collection.
brdfFilteredVars = brdfFilteredVars.map(calcBrdfIndices)
# Section 5.2: Calculate daily NDWI
# Create list of dates for full time series.
brdfRange = brdfFilteredVars.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
brdfEndDate = ee.Date(brdfRange.get('max'))
brdfDays = brdfEndDate.difference(brdfStartDate, 'day')
brdfDatesPrep = ee.List.sequence(0, brdfDays, 1)
def makeBrdfDates(n):
return brdfStartDate.advance(n, 'day')
brdfDates = brdfDatesPrep.map(makeBrdfDates)
# List of dates that exist in BRDF data.
brdfDatesExist = brdfFilteredVars \
.aggregate_array('system:time_start')
# Get daily brdf values.
def calcDailyBrdfExists(curdate):
curdate = ee.Date(curdate)
curyear = curdate.get('year')
curdoy = curdate.getRelative('day', 'year').add(1)
brdfTemp = brdfFilteredVars \
.filterDate(curdate, curdate.advance(1, 'day'))
outImg = brdfTemp.first()
return outImg
dailyBrdfExtExists =
ee.ImageCollection.fromImages(brdfDatesExist.map(
calcDailyBrdfExists))
# Create empty results, to fill in dates when BRDF data does not exist.
def calcDailyBrdfFiller(curdate):
curdate = ee.Date(curdate)
curyear = curdate.get('year')
curdoy = curdate.getRelative('day', 'year').add(1)
brdfTemp = brdfFilteredVars \
.filterDate(curdate, curdate.advance(1, 'day'))
brdfSize = brdfTemp.size()
outImg = ee.Image.constant(0).selfMask() \
.addBands(ee.Image.constant(0).selfMask()) \
.addBands(ee.Image.constant(0).selfMask()) \
.addBands(ee.Image.constant(0).selfMask()) \
.addBands(ee.Image.constant(0).selfMask()) \
.rename(['ndvi', 'evi', 'savi', 'ndwi5', 'ndwi6']) \
.set('doy', curdoy) \
.set('year', curyear) \
.set('system:time_start', curdate) \
.set('brdfSize', brdfSize)
return outImg
# Create filler for all dates.
dailyBrdfExtendedFiller =
ee.ImageCollection.fromImages(brdfDates.map(calcDailyBrdfFiller))
# But only used if and when size was 0.
dailyBrdfExtFillFilt = dailyBrdfExtendedFiller \
.filter(ee.Filter.eq('brdfSize', 0))
# Merge the two collections.
dailyBrdfExtended = dailyBrdfExtExists \
.merge(dailyBrdfExtFillFilt)
# Filter back to original user requested start date.
dailyBrdf = dailyBrdfExtended \
.filterDate(reqStartDate, brdfEndDate.advance(1, 'day'))
# Section 5.3: Summarize daily spectral indices by woreda
# Filter spectral indices for zonal summaries.
brdfSummary = dailyBrdf \
.filterDate(reqStartDate, reqEndDate.advance(1, 'day'))
# Function to calculate zonal statistics for spectral indices by woreda:
def sumZonalBrdf(image):
# To get the doy and year, we convert the metadata to grids
# and then summarize.
image2 = image.addBands([
image.metadata('doy').int(),
image.metadata('year').int()
])
# Reduce by regions to get zonal means for each woreda.
output = image2.select(['doy', 'year', 'ndwi6']) \
.reduceRegions({
'collection': woredas,
'reducer': ee.Reducer.mean(),
'scale': 1000
})
return output
# Map the zonal statistics function over the filtered spectral index data.
brdfWoreda = brdfSummary.map(sumZonalBrdf)
# Flatten the results for export.
brdfFlat = brdfWoreda.flatten()
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 6: Map display of calculated environmental variables
displayDate = ee.Date('2021-10-01')
precipDisp = dailyPrecip \
.filterDate(displayDate, displayDate.advance(1, 'day'))
brdfDisp = dailyBrdf \
.filterDate(displayDate, displayDate.advance(1, 'day'))
LSTDisp = dailyLst \
.filterDate(displayDate, displayDate.advance(1, 'day'))
# Select the image (should be only one) from each collection.
precipImage = precipDisp.first().select('totprec')
LSTmImage = LSTDisp.first().select('LST_mean')
ndwi6Image = brdfDisp.first().select('ndwi6')
# Palettes for environmental variable maps:
palettePrecip = ['f7fbff', '08306b']
paletteLst = ['fff5f0', '67000d']
paletteSpectral = ['ffffe5', '004529']
# Add layers to the map.
# Show precipitation by default,
# others hidden until users picks them from layers drop down.
Map.addLayer({
'eeObject': precipImage,
'visParams': {
'min': 0,
'max': 20,
'palette': palettePrecip
},
'name': 'Precipitation',
'shown': True,
'opacity': 0.75
})
Map.addLayer({
'eeObject': LSTmImage,
'visParams': {
'min': 0,
'max': 40,
'palette': paletteLst
},
'name': 'LST Mean',
'shown': False,
'opacity': 0.75
})
Map.addLayer({
'eeObject': ndwi6Image,
'visParams': {
'min': 0,
'max': 1,
'palette': paletteSpectral
},
'name': 'NDWI6',
'shown': False,
'opacity': 0.75
})
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 7: Exporting
# 7.1 Export naming
reqStartDateText = reqStartDate.format('yyyy-MM-dd').getInfo()
# Precipitation
precipPrefix = 'Export_Precip_Data'
precipLastDate = ee.Date(reqEndDate.millis() \
.min(precipEndDate.millis()))
precipSummaryEndDate = precipLastDate \
.format('yyyy-MM-dd').getInfo()
precipFilename = precipPrefix \
.concat('_', reqStartDateText,
'_', precipSummaryEndDate)
# LST
LSTPrefix = 'Export_LST_Data'
LSTLastDate = ee.Date(reqEndDate.millis() \
.min(LSTEndDate.millis()))
LSTSummaryEndDate = LSTLastDate \
.format('yyyy-MM-dd').getInfo()
LSTFilename = LSTPrefix \
.concat('_', reqStartDateText,
'_', LSTSummaryEndDate)
# BRDF
brdfPrefix = 'Export_Spectral_Data'
brdfLastDate = ee.Date(reqEndDate.millis() \
.min(brdfEndDate.millis()))
brdfSummaryEndDate = brdfLastDate \
.format('yyyy-MM-dd').getInfo()
brdfFilename = brdfPrefix \
.concat('_', reqStartDateText,
'_', brdfSummaryEndDate)
# 7.2 Export flattened tables to Google Drive
# Need to click 'RUN in the Tasks tab to configure and start each export.
Export.table.toDrive({
'collection': precipFlat,
'description': precipFilename,
'selectors': ['wid', 'woreda', 'doy', 'year', 'totprec']
})
Export.table.toDrive({
'collection': LSTFlat,
'description': LSTFilename,
'selectors': ['wid', 'woreda', 'doy', 'year',
'LST_day', 'LST_night', 'LST_mean'
]
})
Export.table.toDrive({
'collection': brdfFlat,
'description': brdfFilename,
'selectors': ['wid', 'woreda', 'doy', 'year', 'ndwi6']
})
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Add Earth Engine dataset
image = ee.Image("USGS/SRTMGL1_003")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Chapter: A1.6 Health Applications
# Checkpoint: A16g
# Author: Dawn Nekorchuk
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Section 1: Data Import
woredas = ee.FeatureCollection(
'projects/gee-book/assets/A1-6/amhara_woreda_20170207')
# Create region outer boundary to filter products on.
amhara = woredas.geometry().bounds()
gpm = ee.ImageCollection('NASA/GPM_L3/IMERG_V06')
LSTTerra8 = ee.ImageCollection('MODIS/061/MOD11A2') \
.filterDate('2001-06-26', Date.now())
brdfReflect = ee.ImageCollection('MODIS/006/MCD43A4')
brdfQa = ee.ImageCollection('MODIS/006/MCD43A2')
# Visualize woredas with black borders and no fill.
# Create an empty image into which to paint the features, cast to byte.
empty = ee.Image().byte()
# Paint all the polygon edges with the same number and width.
outline = empty.paint({
'featureCollection': woredas,
'color': 1,
'width': 1
})
# Add woreda boundaries to the map.
Map.setCenter(38, 11.5, 7)
Map.addLayer(outline, {
'palette': '000000'
}, 'Woredas')
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 2: Handling of dates
# 2.1 Requested start and end dates.
reqStartDate = ee.Date('2021-10-01')
reqEndDate = ee.Date('2021-11-30')
# 2.2 LST Dates
# LST MODIS is every 8 days, and a user-requested date will likely not match.
# We want to get the latest previous image date,
# i.e. the date the closest, but prior to, the requested date.
# We will filter later.
# Get date of first image.
LSTEarliestDate = LSTTerra8.first().date()
# Filter collection to dates from beginning to requested start date.
priorLstImgCol = LSTTerra8.filterDate(LSTEarliestDate,
reqStartDate)
# Get the latest (max) date of this collection of earlier images.
LSTPrevMax = priorLstImgCol.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
LSTStartDate = ee.Date(LSTPrevMax.get('max'))
print('LSTStartDate', LSTStartDate)
# 2.3 Last available data dates
# Different variables have different data lags.
# Data may not be available in user range.
# To prevent errors from stopping script,
# grab last available (if relevant) & filter at end.
# 2.3.1 Precipitation
# Calculate date of most recent measurement for gpm (of all time).
gpmAllMax = gpm.reduceColumns(ee.Reducer.max(), [
'system:time_start'
])
gpmAllEndDateTime = ee.Date(gpmAllMax.get('max'))
# GPM every 30 minutes, so get just date part.
gpmAllEndDate = ee.Date.fromYMD({
'year': gpmAllEndDateTime.get('year'),
'month': gpmAllEndDateTime.get('month'),
'day': gpmAllEndDateTime.get('day')
})
# If data ends before requested start, take last data date,
# otherwise use requested date.
precipStartDate = ee.Date(gpmAllEndDate.millis() \
.min(reqStartDate.millis()))
print('precipStartDate', precipStartDate)
# 2.3.2 BRDF
# Calculate date of most recent measurement for brdf (of all time).
brdfAllMax = brdfReflect.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
brdfAllEndDate = ee.Date(brdfAllMax.get('max'))
# If data ends before requested start, take last data date,
# otherwise use the requested date.
brdfStartDate = ee.Date(brdfAllEndDate.millis() \
.min(reqStartDate.millis()))
print('brdfStartDate', brdfStartDate)
print('brdfEndDate', brdfAllEndDate)
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 3: Precipitation
# Section 3.1: Precipitation filtering and dates
# Filter gpm by date, using modified start if necessary.
gpmFiltered = gpm \
.filterDate(precipStartDate, reqEndDate.advance(1, 'day')) \
.filterBounds(amhara) \
.select('precipitationCal')
# Calculate date of most recent measurement for gpm
# (in the modified requested window).
gpmMax = gpmFiltered.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
gpmEndDate = ee.Date(gpmMax.get('max'))
precipEndDate = gpmEndDate
print('precipEndDate ', precipEndDate)
# Create a list of dates for the precipitation time series.
precipDays = precipEndDate.difference(precipStartDate, 'day')
precipDatesPrep = ee.List.sequence(0, precipDays, 1)
def makePrecipDates(n):
return precipStartDate.advance(n, 'day')
precipDates = precipDatesPrep.map(makePrecipDates)
# Section 3.2: Calculate daily precipitation
# Function to calculate daily precipitation:
def calcDailyPrecip(curdate):
curdate = ee.Date(curdate)
curyear = curdate.get('year')
curdoy = curdate.getRelative('day', 'year').add(1)
totprec = gpmFiltered \
.filterDate(curdate, curdate.advance(1, 'day')) \
.select('precipitationCal') \
.sum() \
.multiply(0.5) \
.rename('totprec')
return totprec \
.set('doy', curdoy) \
.set('year', curyear) \
.set('system:time_start', curdate)
# Map function over list of dates.
dailyPrecipExtended =
ee.ImageCollection.fromImages(precipDates.map(calcDailyPrecip))
# Filter back to the original user requested start date.
dailyPrecip = dailyPrecipExtended \
.filterDate(reqStartDate, precipEndDate.advance(1, 'day'))
# Section 3.3: Summarize daily precipitation by woreda
# Filter precip data for zonal summaries.
precipSummary = dailyPrecip \
.filterDate(reqStartDate, reqEndDate.advance(1, 'day'))
# Function to calculate zonal statistics for precipitation by woreda.
def sumZonalPrecip(image):
# To get the doy and year,
# convert the metadata to grids and then summarize.
image2 = image.addBands([
image.metadata('doy').int(),
image.metadata('year').int()
])
# Reduce by regions to get zonal means for each county.
output = image2.select(['year', 'doy', 'totprec']) \
.reduceRegions({
'collection': woredas,
'reducer': ee.Reducer.mean(),
'scale': 1000
})
return output
# Map the zonal statistics function over the filtered precip data.
precipWoreda = precipSummary.map(sumZonalPrecip)
# Flatten the results for export.
precipFlat = precipWoreda.flatten()
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 4: Land surface temperature
# Section 4.1: Calculate LST variables
# Filter Terra LST by altered LST start date.
# Rarely, but at the end of the year if the last image is late in the year
# with only a few days in its period, it will sometimes not grab
# the next image. Add extra padding to reqEndDate and
# it will be trimmed at the end.
LSTFiltered = LSTTerra8 \
.filterDate(LSTStartDate, reqEndDate.advance(8, 'day')) \
.filterBounds(amhara) \
.select('LST_Day_1km', 'QC_Day', 'LST_Night_1km', 'QC_Night')
# Filter Terra LST by QA information.
def filterLstQa(image):
qaday = image.select(['QC_Day'])
qanight = image.select(['QC_Night'])
dayshift = qaday.rightShift(6)
nightshift = qanight.rightShift(6)
daymask = dayshift.lte(2)
nightmask = nightshift.lte(2)
outimage = ee.Image(image.select(['LST_Day_1km',
'LST_Night_1km'
]))
outmask = ee.Image([daymask, nightmask])
return outimage.updateMask(outmask)
LSTFilteredQa = LSTFiltered.map(filterLstQa)
# Rescale temperature data and convert to degrees Celsius (C).
def rescaleLst(image):
LST_day = image.select('LST_Day_1km') \
.multiply(0.02) \
.subtract(273.15) \
.rename('LST_day')
LST_night = image.select('LST_Night_1km') \
.multiply(0.02) \
.subtract(273.15) \
.rename('LST_night')
LST_mean = image.expression(
'(day + night) / 2', {
'day': LST_day.select('LST_day'),
'night': LST_night.select('LST_night')
}
).rename('LST_mean')
return image.addBands(LST_day) \
.addBands(LST_night) \
.addBands(LST_mean)
LSTVars = LSTFilteredQa.map(rescaleLst)
# Section 4.2: Calculate daily LST
# Create list of dates for time series.
LSTRange = LSTVars.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
LSTEndDate = ee.Date(LSTRange.get('max')).advance(7, 'day')
LSTDays = LSTEndDate.difference(LSTStartDate, 'day')
LSTDatesPrep = ee.List.sequence(0, LSTDays, 1)
def makeLstDates(n):
return LSTStartDate.advance(n, 'day')
LSTDates = LSTDatesPrep.map(makeLstDates)
# Function to calculate daily LST by assigning the 8-day composite summary
# to each day in the composite period:
def calcDailyLst(curdate):
curyear = ee.Date(curdate).get('year')
curdoy = ee.Date(curdate).getRelative('day', 'year').add(1)
moddoy = curdoy.divide(8).ceil().subtract(1).multiply(8).add(
1)
basedate = ee.Date.fromYMD(curyear, 1, 1)
moddate = basedate.advance(moddoy.subtract(1), 'day')
LST_day = LSTVars \
.select('LST_day') \
.filterDate(moddate, moddate.advance(1, 'day')) \
.first() \
.rename('LST_day')
LST_night = LSTVars \
.select('LST_night') \
.filterDate(moddate, moddate.advance(1, 'day')) \
.first() \
.rename('LST_night')
LST_mean = LSTVars \
.select('LST_mean') \
.filterDate(moddate, moddate.advance(1, 'day')) \
.first() \
.rename('LST_mean')
return LST_day \
.addBands(LST_night) \
.addBands(LST_mean) \
.set('doy', curdoy) \
.set('year', curyear) \
.set('system:time_start', curdate)
# Map the function over the image collection
dailyLstExtended =
ee.ImageCollection.fromImages(LSTDates.map(calcDailyLst))
# Filter back to original user requested start date
dailyLst = dailyLstExtended \
.filterDate(reqStartDate, LSTEndDate.advance(1, 'day'))
# Section 4.3: Summarize daily LST by woreda
# Filter LST data for zonal summaries.
LSTSummary = dailyLst \
.filterDate(reqStartDate, reqEndDate.advance(1, 'day'))
# Function to calculate zonal statistics for LST by woreda:
def sumZonalLst(image):
# To get the doy and year, we convert the metadata to grids
# and then summarize.
image2 = image.addBands([
image.metadata('doy').int(),
image.metadata('year').int()
])
# Reduce by regions to get zonal means for each county.
output = image2 \
.select(['doy', 'year', 'LST_day', 'LST_night', 'LST_mean']) \
.reduceRegions({
'collection': woredas,
'reducer': ee.Reducer.mean(),
'scale': 1000
})
return output
# Map the zonal statistics function over the filtered LST data.
LSTWoreda = LSTSummary.map(sumZonalLst)
# Flatten the results for export.
LSTFlat = LSTWoreda.flatten()
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 5: Spectral index NDWI
# Section 5.1: Calculate NDWI
# Filter BRDF-Adjusted Reflectance by date.
brdfReflectVars = brdfReflect \
.filterDate(brdfStartDate, reqEndDate.advance(1, 'day')) \
.filterBounds(amhara) \
.select([
'Nadir_Reflectance_Band1', 'Nadir_Reflectance_Band2',
'Nadir_Reflectance_Band3', 'Nadir_Reflectance_Band4',
'Nadir_Reflectance_Band5', 'Nadir_Reflectance_Band6',
'Nadir_Reflectance_Band7'
],
['red', 'nir', 'blue', 'green', 'swir1', 'swir2', 'swir3'])
# Filter BRDF QA by date.
brdfReflectQa = brdfQa \
.filterDate(brdfStartDate, reqEndDate.advance(1, 'day')) \
.filterBounds(amhara) \
.select([
'BRDF_Albedo_Band_Quality_Band1',
'BRDF_Albedo_Band_Quality_Band2',
'BRDF_Albedo_Band_Quality_Band3',
'BRDF_Albedo_Band_Quality_Band4',
'BRDF_Albedo_Band_Quality_Band5',
'BRDF_Albedo_Band_Quality_Band6',
'BRDF_Albedo_Band_Quality_Band7',
'BRDF_Albedo_LandWaterType'
],
['qa1', 'qa2', 'qa3', 'qa4', 'qa5', 'qa6', 'qa7', 'water'])
# Join the 2 collections.
idJoin = ee.Filter.equals({
'leftField': 'system:time_end',
'rightField': 'system:time_end'
})
# Define the join.
innerJoin = ee.Join.inner('NBAR', 'QA')
# Apply the join.
brdfJoined = innerJoin.apply(brdfReflectVars, brdfReflectQa,
idJoin)
# Add QA bands to the NBAR collection.
def addQaBands(image):
nbar = ee.Image(image.get('NBAR'))
qa = ee.Image(image.get('QA')).select(['qa2'])
water = ee.Image(image.get('QA')).select(['water'])
return nbar.addBands([qa, water])
brdfMerged = ee.ImageCollection(brdfJoined.map(addQaBands))
# Function to mask out pixels based on QA and water/land flags.
def filterBrdf(image):
# Using QA info for the NIR band.
qaband = image.select(['qa2'])
wband = image.select(['water'])
qamask = qaband.lte(2).And(wband.eq(1))
nir_r = image.select('nir').multiply(0.0001).rename('nir_r')
swir2_r = image.select('swir2').multiply(0.0001).rename(
'swir2_r')
return image.addBands(nir_r) \
.addBands(swir2_r) \
.updateMask(qamask)
brdfFilteredVars = brdfMerged.map(filterBrdf)
# Function to calculate spectral indices:
def calcBrdfIndices(image):
curyear = ee.Date(image.get('system:time_start')).get('year')
curdoy = ee.Date(image.get('system:time_start')) \
.getRelative('day', 'year').add(1)
ndwi6 = image.normalizedDifference(['nir_r', 'swir2_r']) \
.rename('ndwi6')
return image.addBands(ndwi6) \
.set('doy', curdoy) \
.set('year', curyear)
# Map function over image collection.
brdfFilteredVars = brdfFilteredVars.map(calcBrdfIndices)
# Section 5.2: Calculate daily NDWI
# Create list of dates for full time series.
brdfRange = brdfFilteredVars.reduceColumns({
'reducer': ee.Reducer.max(),
'selectors': ['system:time_start']
})
brdfEndDate = ee.Date(brdfRange.get('max'))
brdfDays = brdfEndDate.difference(brdfStartDate, 'day')
brdfDatesPrep = ee.List.sequence(0, brdfDays, 1)
def makeBrdfDates(n):
return brdfStartDate.advance(n, 'day')
brdfDates = brdfDatesPrep.map(makeBrdfDates)
# List of dates that exist in BRDF data.
brdfDatesExist = brdfFilteredVars \
.aggregate_array('system:time_start')
# Get daily brdf values.
def calcDailyBrdfExists(curdate):
curdate = ee.Date(curdate)
curyear = curdate.get('year')
curdoy = curdate.getRelative('day', 'year').add(1)
brdfTemp = brdfFilteredVars \
.filterDate(curdate, curdate.advance(1, 'day'))
outImg = brdfTemp.first()
return outImg
dailyBrdfExtExists =
ee.ImageCollection.fromImages(brdfDatesExist.map(
calcDailyBrdfExists))
# Create empty results, to fill in dates when BRDF data does not exist.
def calcDailyBrdfFiller(curdate):
curdate = ee.Date(curdate)
curyear = curdate.get('year')
curdoy = curdate.getRelative('day', 'year').add(1)
brdfTemp = brdfFilteredVars \
.filterDate(curdate, curdate.advance(1, 'day'))
brdfSize = brdfTemp.size()
outImg = ee.Image.constant(0).selfMask() \
.addBands(ee.Image.constant(0).selfMask()) \
.addBands(ee.Image.constant(0).selfMask()) \
.addBands(ee.Image.constant(0).selfMask()) \
.addBands(ee.Image.constant(0).selfMask()) \
.rename(['ndvi', 'evi', 'savi', 'ndwi5', 'ndwi6']) \
.set('doy', curdoy) \
.set('year', curyear) \
.set('system:time_start', curdate) \
.set('brdfSize', brdfSize)
return outImg
# Create filler for all dates.
dailyBrdfExtendedFiller =
ee.ImageCollection.fromImages(brdfDates.map(calcDailyBrdfFiller))
# But only used if and when size was 0.
dailyBrdfExtFillFilt = dailyBrdfExtendedFiller \
.filter(ee.Filter.eq('brdfSize', 0))
# Merge the two collections.
dailyBrdfExtended = dailyBrdfExtExists \
.merge(dailyBrdfExtFillFilt)
# Filter back to original user requested start date.
dailyBrdf = dailyBrdfExtended \
.filterDate(reqStartDate, brdfEndDate.advance(1, 'day'))
# Section 5.3: Summarize daily spectral indices by woreda
# Filter spectral indices for zonal summaries.
brdfSummary = dailyBrdf \
.filterDate(reqStartDate, reqEndDate.advance(1, 'day'))
# Function to calculate zonal statistics for spectral indices by woreda:
def sumZonalBrdf(image):
# To get the doy and year, we convert the metadata to grids
# and then summarize.
image2 = image.addBands([
image.metadata('doy').int(),
image.metadata('year').int()
])
# Reduce by regions to get zonal means for each woreda.
output = image2.select(['doy', 'year', 'ndwi6']) \
.reduceRegions({
'collection': woredas,
'reducer': ee.Reducer.mean(),
'scale': 1000
})
return output
# Map the zonal statistics function over the filtered spectral index data.
brdfWoreda = brdfSummary.map(sumZonalBrdf)
# Flatten the results for export.
brdfFlat = brdfWoreda.flatten()
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 6: Map display of calculated environmental variables
displayDate = ee.Date('2021-10-01')
precipDisp = dailyPrecip \
.filterDate(displayDate, displayDate.advance(1, 'day'))
brdfDisp = dailyBrdf \
.filterDate(displayDate, displayDate.advance(1, 'day'))
LSTDisp = dailyLst \
.filterDate(displayDate, displayDate.advance(1, 'day'))
# Select the image (should be only one) from each collection.
precipImage = precipDisp.first().select('totprec')
LSTmImage = LSTDisp.first().select('LST_mean')
ndwi6Image = brdfDisp.first().select('ndwi6')
# Palettes for environmental variable maps:
palettePrecip = ['f7fbff', '08306b']
paletteLst = ['fff5f0', '67000d']
paletteSpectral = ['ffffe5', '004529']
# Add layers to the map.
# Show precipitation by default,
# others hidden until users picks them from layers drop down.
Map.addLayer({
'eeObject': precipImage,
'visParams': {
'min': 0,
'max': 20,
'palette': palettePrecip
},
'name': 'Precipitation',
'shown': True,
'opacity': 0.75
})
Map.addLayer({
'eeObject': LSTmImage,
'visParams': {
'min': 0,
'max': 40,
'palette': paletteLst
},
'name': 'LST Mean',
'shown': False,
'opacity': 0.75
})
Map.addLayer({
'eeObject': ndwi6Image,
'visParams': {
'min': 0,
'max': 1,
'palette': paletteSpectral
},
'name': 'NDWI6',
'shown': False,
'opacity': 0.75
})
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
# Section 7: Exporting
# 7.1 Export naming
reqStartDateText = reqStartDate.format('yyyy-MM-dd').getInfo()
# Precipitation
precipPrefix = 'Export_Precip_Data'
precipLastDate = ee.Date(reqEndDate.millis() \
.min(precipEndDate.millis()))
precipSummaryEndDate = precipLastDate \
.format('yyyy-MM-dd').getInfo()
precipFilename = precipPrefix \
.concat('_', reqStartDateText,
'_', precipSummaryEndDate)
# LST
LSTPrefix = 'Export_LST_Data'
LSTLastDate = ee.Date(reqEndDate.millis() \
.min(LSTEndDate.millis()))
LSTSummaryEndDate = LSTLastDate \
.format('yyyy-MM-dd').getInfo()
LSTFilename = LSTPrefix \
.concat('_', reqStartDateText,
'_', LSTSummaryEndDate)
# BRDF
brdfPrefix = 'Export_Spectral_Data'
brdfLastDate = ee.Date(reqEndDate.millis() \
.min(brdfEndDate.millis()))
brdfSummaryEndDate = brdfLastDate \
.format('yyyy-MM-dd').getInfo()
brdfFilename = brdfPrefix \
.concat('_', reqStartDateText,
'_', brdfSummaryEndDate)
# 7.2 Export flattened tables to Google Drive
# Need to click 'RUN in the Tasks tab to configure and start each export.
Export.table.toDrive({
'collection': precipFlat,
'description': precipFilename,
'selectors': ['wid', 'woreda', 'doy', 'year', 'totprec']
})
Export.table.toDrive({
'collection': LSTFlat,
'description': LSTFilename,
'selectors': ['wid', 'woreda', 'doy', 'year',
'LST_day', 'LST_night', 'LST_mean'
]
})
Export.table.toDrive({
'collection': brdfFlat,
'description': brdfFilename,
'selectors': ['wid', 'woreda', 'doy', 'year', 'ndwi6']
})
# -----------------------------------------------------------------------
# CHECKPOINT
# -----------------------------------------------------------------------
Display the interactive map¶
In [ ]:
Copied!
Map
Map